

Informe de Gestión Operaciones dique La Estrechura:

Las operaciones a lo largo del año 2024 consistieron en la mejora de la cantidad de agua embalsada ya que se observó que el dique estaba muy bajo. Las lluvias que tuvimos hasta abril del año 2024 fueron muy positivas posibilitándonos aumentar el volumen embalsado al punto de que esté a su capacidad del 80% en el mes de septiembre. Desde ese punto el manejo del embalse estuvo destinado al llenado del dique Cruz de Piedra con el agua embalsada en La Estrechura, con la apertura de válvula al 15% de su capacidad, erogando agua por el Rio el Volcán hasta Cruz de Piedra. Este trasvase entre embalses que nos permite regular las cotas de embalse en los espejos de agua que se encuentran conectados por el mismo rio genera disminuciones y aumentos controlados en todo momento por San Luis Agua, siguiendo siempre el criterio de priorizar el abastecimiento poblacional, agrícola ganadero, industrial y turístico, en orden decreciente.

Grafica de cotas de embalse mes a mes año 2024

Cabe destacar que el dique La Estrechura es de uso poblacional, Abastece un acueducto que sale del cuerpo de presa del embalse a la planta potabilizadora de El Volcán, regula el Rio homónimo y proporciona un espejo apto para turismo sin navegación.

A lo largo de todo el 2024 se abasteció a la planta potabilizadora de manera ininterrumpida y con calidades de agua que monitoreamos tanto en embalse como en el Rio Volcán, aguas abajo, con valores dentro de parámetros normales para agua cruda en todas las muestras analizadas. (Se adjuntan los informes de los estudios realizados)

En cuanto al mantenimiento y operatividad de del embalse se destaca que desde el embalse se aportó a lo largo de todo el año un caudal ecológico que permite que corran caudales por el río, circulando por la localidad turística de El Volcán. Todo esto demuestra que la problemática actual de la localidad, no es por aperturas o cierres de caudales desde el dique sino que tienen que ver con las condiciones de suelo y temperaturas propias de verano. Estas altas temperaturas de verano aumentan la presencia y actividad de materia orgánica en el agua, pero que se encuentran dentro de parámetros normales del agua entregada a la planta potabilizadora del Volcán.

En cuanto a tareas propias de mantenimiento aguas bajo del dique, el día 02 de enero de 2025 se trabajó con maquinaria vial a fin de reencauzar el agua que sale del cuerpo de presa al rio, sin estancarse y sin darle posibilidad al florecimiento de algas en agua aquietada y que prolifere no solo olores nauseabundos sino también vectores. Estos trabajos, trajeron resultados inmediatos ya que al finalizar los mismos, los olores producto de descomposición de algas desparecieron y al realizar inspecciones en zonas turísticas de la localidad, tampoco se pudo percibir el olor que aquejaba a la localidad en las inmediaciones del embalse.

Situación inicial al comienzo de los trabajos, generando la salida a los volúmenes estancandos

Situación final, ya sin agua aquietada, en la parte superior se observa la salida de la válvula que incorpora directamente al rio con tonalidades de agua muy diferentes a la aquietada.

Cabe destacar que el cuenco que se observa en la imagen anterior corresponde al cuenco amortiguador de la presa, que es una estructura totalmente necesaria del punto de vista de seguridad de presa, ya que si el dique vierte por estar lleno, este cuenco recibe el agua vertida y amortigua la caída evitando erosiones en el rio aguas abajo.

A continuación se anexan los análisis realizados en detalle y las conclusiones de los mismos:

MONITOREO ESTACIONAL 2024 - DIQUE LA ESTRECHURA

Mediante el presente informe, se dejan asentados los datos obtenidos y analizados por la Gerencia Fiscalización, en el marco del Plan de Monitoreo Estacional de agua cruda para los distintos sistemas hídricos que presenta el territorio provincial.

1. ANTECEDENTES

Desde la Gerencia se han realizado monitoreos sobre este dique en los años 2022 y 2023 en ambas temporadas, estival e invernal. De los tributarios, el Arroyo Barranca Grande es el mayor aportante de cloruros, sulfatos, sodio y fluoruros, siendo en menor medida el aporte de magnesio y calcio. Además en este arroyo se produce una mayor descomposición de materia orgánica, aumentando valores de nitratos y fósforo principalmente hacia el año 2023, caracterizado por ser un año de muy escasas precipitaciones. En cuanto al vertedero o cuenco disipador, sin relación con la toma del acueducto para la planta potabilizadora, en el año 2022 se presenta una mayor descomposición de materia orgánica, con mayor aporte de amonio y amoniaco, nitratos, nitritos y fósforo, a lo que se le añade una baja calidad microbiana por presencia de coliformes fecales y *Escherichia coli* en ambas temporadas de ese año. En todos los puntos muestrales de todos los años, el pH es levemente alcalino.

2. TOMA DE MUESTRA

- **2.1. Período Invernal:** el día 08 de abril se tomaron muestras, al ingreso del arroyo Estancia Grande, al ingreso arroyo Las Barrancas, en el vertedero y del Rio El Volcán.
- **2.2. Período Estival:** el día 13 de diciembre, se lleva a cabo el muestreo en los mismos puntos preestablecidos.
- 3. Tabla 1. Georreferencias de cada punto muestral, etiquetas de las muestras y TAG de la sonda

Punto / Sitio	Geolocalización	Etiqueta 1	Muestra	Sonda (TAG)		
			Estival	Invernal	Estival	
Ingreso R. Barranca Grande	33°14'21.02"S; 66° 9'57.74"0	LB	DLE1	43	181	
Ingreso R. Estancia Grande	33°14'4.90"S; 66°10'22.88"0	DLE1	DLE2	42	182	
Vertedero	33°14'18.37"S; 66°10'27.17"0	CDLE	DLE3	40	183	

Figura 1. Vista satelital del Dique La Estrechura y ubicación de los puntos muestrales

Observaciones del muestreo: a simple vista, en todos los puntos muestrales y en ambas estaciones se observa una calidad media del agua. Sobre el vertedero en período invernal se registra la presencia de *Azolla* sp. y *Lemna* sp. conocida también como lenteja de agua. En período estival, se observa que sobre el vertedero el agua presenta bastante olor desagradable y una coloración grisácea a verdosa con alta turbidez, además de ejemplares de *Azolla* sp. hacia los márgenes.

3 MEDICIONES IN SITU:

Se midieron parámetros *in situ* mediante sonda multiparamétrica marca AQUAREAD AP-700. Los valores obtenidos se detallan en la Tabla 2.

Tabla 2. Datos extraídos de la sonda multiparamétrica AQUAREAD AP-700 para cada punto muestral

Punto muestral	Período	Hora	Temp (C)	рН	ORP (REDO X)	DO (% Sat)	DO (mg/L)	EC (uS/cm)	RES (Ohms. cm)	TDS (mg/L)	SAL (PSU)	Alt (m)
Ingreso R. Barranca	Invernal	10:48	20.60	7.83	+88.1	184.3	14.69	588	1855	382	0.25	989
Grande	Estival	11:53	22.30	8.87	-0.6	101.9	7.89	838	1257	544	0.35	988
Ingreso R. Estancia	Invernal	9:24	19.50	7.66	+74.0	152.0	12.40	558	2000	362	0.23	988
Grande	Estival	12:21	24.20	8.97	-39.0	103.8	07.73	816	1243	530	0.34	988
Vertedero	Invernal	8:51	18.88	8.97	+76.1	121.9	10.05	765	1481	497	0.32	973

Estival	12:39	20.70	7.97	-135.2	101.1	8.08	929	1172	603	0.39	1001

De acuerdo a los datos obtenidos, en período estival aumentan los sólidos en suspensión y por ende la conductividad. Mientras que el oxígeno disuelto responde a su correlación con la temperatura, siendo más elevado en época invernal. El pH se mantiene ligeramente alcalino.

4. RESULTADOS DE LABORATORIO

Los parámetros fisicoquímicos y microbiológicos son analizados según el **Decreto Nº 2092-MLyRI-2006**, Anexo V.a: Tablas de calidad de aguas dulces, segunda columna: agua dulce superficial - protección de vida acuática.

Dique La Estrechura 2024								
Parámetro	Aº Barranca Grande		Aº Estancia Grande		Vertedero		Decreto	
							2092-MLyRI- 2006	
						200.00.		
	ı	Fisicoquím	ico					
Amonio (mg/L)	0.05		0.31		0.6		<1.37 pH 8 - <2.2 pH 6.5	
Amoníaco (mg/L)	0.04		0.29		0.56		ND	
Arsénico (mg/L)	<0.001		<0.001		<0.001		<0.05	
Bario (mg/L)	<0.03		<0.03		<0.03		<0.5	
Boro (mg/L)	<0.5		<0.5		<0.5		<0.75	
Cadmio (mg/L)	<0.001		<0.001		<0.001		<0.0002	
Calcio (mg/L)	62.52		61.08		82.97		ND	
Cloro Activo Residual (mg/L)	<0.01		<0.01		<0.01		ND	
Cobre (mg/L)	<0.01		<0.01		<0.01		<0.002	

Color (UC)	0	0	2	ND
Conductividad (uS/cm)	597	567	856	ND
DBO (mg O2/L)	5.97	14.25	13.19	< 50
DQO (mg O2/L)	10.18	22.63	21.23	< 100
Dureza total (mg CaCO3/L)	231.51	223.7	313.79	ND
Fluoruro (mg/L)	0.24	0.2	0.47	<1
Fósforo Total (mg/L)	0.32	0.31	0.51	ND
Hierro (mg/L)	<0.01	<0.01	<0.01	<0.3
Magnesio (mg/L)	18.32	17.3	25.91	ND
Mercurio (mg/L)	<0.0002	<0.0002	<0.0002	<0.0001
Nitrato (mg/L)	0.09	0.06	0.19	< 1
Nitrito (mg/L)	< 0.02	< 0.02	0.19	<0.06
Olor	Sin olores extraños	Sin olores extraños	Sin olores extraños	ND
рН	8.09	7.96	7.95	6.5 - 8.5
Plata (mg/L)	<0.01	<0.01	<0.01	<0.0001
Plomo (mg/L)	<0.01	<0.01	<0.01	<0.001
Sulfato (mg/L)	36.02	30.98	53.9	ND
Sulfuro (mg/L)	<0.1	<0.1	<0.1	<0.02
Sólidos en suspensión totales (mg/L)	17.63	21.15	49.38	ND
Sólidos Sedimentables 10m (mL/L)	<0.1	<0.1	<0.1	ND
Sólidos Sedimentables 2h (mL/L)	<0.1	<0.1	<0.1	ND
TOC (mg C/L)	1.91	4.76	4.23	ND
Turbidez NTU	2.5	2.8	3.5	ND

Zinc (mg/L)	<0.01		<0.01	<0.01	<0.03
Clorofila (mg/L)	ND		ND	ND	ND
Grasas y Aceites	<1		<1	<1	ND
Hidrocarburos de Petróleo Totales (mg/L)	<1		<1	<1	ND
Investigación de Clorofila	Presencia		Presencia	Presencia	
Microcistina LR (ppb)	<1		<1	<1	ND
S.A.A.M. (mg/L)	<0.1		<0.1	<0.1	ND
Screening Plaguicidas Organoclorados	Ausencia		Ausencia	Ausencia	ND
Screening Plaguicidas Organofosforados	Ausencia		Ausencia	Ausencia	ND
SS.EE. (mg/L)	<0.01		0.35	<0.01	ND
Trihalometanos (μg/L)	< 0.02		< 0.02	< 0.02	<100
	N	1icrobioló	gico		
Pseudomonas aeruginosa (cada 100 mL)	Ausencia		Ausencia	Ausencia	ND
Bacterias Mesófilas Totales (UFC/mL)	244		85	1264	<5000
Coliformes Fecales (UFC/mL)	<1		<1	<1	ND
Coliformes Totales (NPM/100mL)	69		2500	9200	<100
Escherichia coli (UFC/100mL)	<1		<1	<1	ND

4.1. Análisis Fisicoquímico

Periodo invernal: Los parámetros fisicoquímicos de las muestras tomadas en el cuerpo del dique cumplen con la normativa Decreto Nº 2092-MLyRI-2006 Agua Dulce Superficial – Protección de la vida acuática (columna 2). La calidad del agua cruda es apta para potabilizar por plantas potabilizadoras convencionales. En cuanto al cuenco disipador los parámetros fisicoquímicos son levemente superiores, se pueden atribuir al estancamiento en el sector.

Periodo Estival: Aun en proceso las muestras

4.2. Análisis Microbiológico

Periodo invernal: Durante la temporada invernal, se observa un incremento significativo en las concentraciones de coliformes totales en el cuerpo de agua, probablemente por la escasez de

precipitaciones, que reduce la dilución y favorece la acumulación de nutrientes. Estas bacterias se encuentran de manera natural en las fuentes de agua, vegetación y suelo; no están relacionadas a la contaminación fecal y son de eliminables por procesos de desinfección adecuada en el proceso de potabilización.

5. **CONCLUSIONES**

Los parámetros que se encuentran superando los límites de la normativa, no se han considerado por el equipo técnico como indicadores peligrosos. Sin embargo, se recomienda continuar con monitoreos estacionales para la alerta temprana frente a alteraciones en los parámetros mencionados en el punto precedente o demás que pongan en riesgo la calidad del recurso hídrico para sus distintos usos.

6. REVISIÓN BIBLIOGRÁFICA

- Cabrera Molina, E., Hernández Garciadiego, L., Gómez Ruíz, H., & Cañizares Macías, M. (2003). Determinación de nitratos y nitritos en agua: Comparación de costos entre un método de flujo continuo y un método estándar. Revista de la Sociedad Química de México, 47(1), 88-92.
- COD/BOD Removal From Water. (2021). Australia. Clean TeQ Water. https://www.cleanteqwater.com/water-recovery-solutions/cod-and-bod-removal/
- De Miguel-Fernández, C., & Vázquez-Taset, Y. M. (2006). Origen de los nitratos (NO3) y nitritos (NO2) y su influencia en la potabilidad de las aguas subterráneas. Minería y Geología, 22(3), 1-9.
- Decreto 2092 de 2006 (Ministerio de la Legalidad y Relaciones Institucionales). Por el cual se reglamenta la Ley Provincial IX-0335 de 2004 sobre Residuos Peligrosos.
- Drinking Water Rerqueriments for states and Public Water Systems. (2018). Estados Unidos. United States Environmental Protection Agency. https://www.epa.gov/dwreginfo
- Gómez, M., Peña, P., & Vásquez, M. (1999). Determinación y diferenciación Escherichia coli y Coliformes Totales usando un sustrato cromógeno. Laboratorio Central. Aquagest. Galicia, España.
- Oxygen consuming substances in European rivers. (2023). Unión Europea. European Environment Agency. https://www.eea.europa.eu/en/analysis/indicators/oxygenconsuming-substances-in-european-rivers?activeAccordion=546a7c35-9188-4d23-94ee-005d97c26f2b
- Revised Total Coliform Rule And Total Coliform Rule. (2024). United States
 Environmental Protection Agency. https://www.epa.gov/dwreginfo/revised-total-coliform-rule-and-total-coliform-rule
- Resúmenes de Salud Pública. (2008). Atlanta, Estados Unidos. Agencia para Sustancias
 Tóxicas y el Registro de enfermedades. https://www.atsdr.cdc.gov/es
- Robert, L., Hoffmann, M., Krell, N., Aymerich, S., Robert, J., & Doumic, M. (2014).
 Division in *Escherichia coli* is triggered by a size-sensing rather than a timing mechanism. BMC biology, 12, 1-10.
- Rodríguez, R., Retamozo-Chavez, R., Aponte, H., & Valdivia, E. (2017). Evaluación microbiológica de un cuerpo de agua del ACR Humedales de Ventanilla (Callao, Perú) y su importancia para la salud pública local. Ecología Aplicada, 16(1), 15-21.
- Surface Water Ambient Monitoring Program. (2024). California, Estados Unidos. Water Boards. State Water Resources Control Board.
 - https://www.waterboards.ca.gov/water_issues/programs/swamp/